中国通量观测研究网络(ChinaFLUX)专题 最新来稿(未评审) 版本 ZH1
下载
2009–2013年哀牢山亚热带常绿阔叶林碳水通量观测数据集
A dataset of carbon and water fluxes observation in subtropical evergreen broad-leaved forest in Ailao Shan from 2009 to 2013
: 2020 - 09 - 16
: 2020 - 09 - 23
165 0 0
摘要&关键词
摘要:本研究以哀牢山亚热带常绿阔叶林生态系统为研究对象,利用涡度相关技术,开展亚热带常绿阔叶林生态系统碳水通量长期定位观测。哀牢山生态站作为国家野外台站和中国生态系统研究网络的基础观测站点,基于ChinaFLUX数据处理体系,已持续积累了12年标准化亚热带常绿阔叶林碳水通量和关键气象要素数据集。本数据集可以为我们评价生态系统对气候变化贡献、预测全球区域性气候变化趋势、开展亚热带常绿阔叶林生态系统碳水通量交换特征、亚热带常绿阔叶林生态系统结构与功能、物质和能量循环、生物资源可持续利用、气候变化区域碳收支管理政策等方面研究提供数据支撑。
关键词:涡度相关技术;通量数据;碳水循环;气象要素;亚热带常绿阔叶林;哀牢山
Abstract & Keywords
Abstract: In this study, the ecosystem of subtropical evergreen broad-leaved forest in Ailao Shan was taken as the research object, and the long-term positioning observation of carbohydrate flux in subtropical evergreen broad-leaved forest ecosystem was carried out by using vorticity correlation technology. Ailao shan Ecological Station, as the national field station and the basic observation station of China Ecosystem Research Network, has continuously accumulated 12 years of standardized data sets of carbohydrate flux and key meteorological elements in subtropical evergreen broad-leaved forest based on China FLUX data processing system. This data set can provide data support for us to evaluate the contribution of ecosystem to climate change, predict the global regional climate change trend, develop subtropical evergreen broad-leaved forest ecosystem carbon and water flux exchange characteristics, subtropical evergreen broad-leaved forest ecosystem structure, function, the material and energy cycle, the sustainable utilization of biological resources, and the regional carbon budget management policy of climate change.
Keywords: eddy covariance technique; flux data; carbon-water cycle; meteorological elements; subtropical evergreen broad-leaved forest; Ailao Shan
稿件与作者信息
起德花
Qi Dehua
费学海
Fei Xuehai
宋清海
Song Qinghai
张一平
Zhang Yiping
yipingzh@xtbg.ac.cn
沙丽清
Sha Liqing
shalq@xtbg.ac.cn
刘运通
Liu Yuntong
周文君
Zhou Wenjun
鲁志云
Lu Zhiyun
范泽鑫
Fan Zexin
出版历史
参考文献列表中查看
中国科学数据
csdata