首先基于异质性最小原则的区域合并算法FNEA(Fractal Net Evolution Approach),考虑光谱异质性、形状异质性对影像进行多尺度分割,形成影像对象层,统计影像对象层中对象的特征信息,其次基于最小冗余最大相关特征选择算法mRMR(minimum-redundancy maximum-relevancy)选择众多特征中的最优特征子集,具体包括水体指数、灰度共生矩阵GLCM(Grey Level Concurrence Matrix)信息熵、形状特征中长宽比,构建知识规则集,提取水体。所选的水体指数中包括由Mcfeeters在1996年提出的归一化水体指数NDWI、徐涵秋
[12]提出的改进的归一化水体指数MNDWI及混合水体指数
[13](CIWI),其中NDWI是利用绿光波段与近红外波段水体与非水体的波谱差异提取水体信息,MNDWI是针对土壤、建筑物在绿光波段和近红外波段波谱特征与水体几乎一致,易与水体造成混淆的问题提出的基于近中红外(MIR)波段与绿光波段组合提取水体的方法,使水体识别精度得到进一步改善,但是仍有部分城镇信息混合在水体中,同时对于高分1号影像,缺乏参与计算的近中红外波段,存在一定的局限性;而混合水体指数则是在分析NDWI与MNDWI优缺点和各波段光谱特征的基础上,用近红外波段与近红外波段均值的比值构造一个无量纲参数NIR,再将其与归一化植被指数NDVI求和,增强水体与其他地物的差异,同时也能运用于高分一号影像中,计算公式如下:
\(CIWI=\frac{NIR-R}{NIR+R}+\frac{NIR}{{NIR}_{mean}}\) (1)
式中CIWI为混合水体指数,NIR为遥感影像中的近红外波段,NIRmean 为遥感影像中的近红外波段像素均值,R为遥感影像中的红光波段。在进行特征优选过程中发现这3种特征具有较强相关性,为提高计算效率,选取其中对水体信息提取贡献最大的CIWI指数进行分类,具体步骤包括:首先利用CIWI提取出大致水体范围。此范围中除了水体信息,还包含部分云层、山体阴影信息。再通过调节长宽比特征阈值,选取长宽比阈值剔除山体阴影信息。通过调节信息熵阈值,提取出云层信息,结合前后时期的影像信息人工判读云层覆盖范围的地表土地利用类型。最后对提取出的水体信息进行碎斑去除等后处理,整理出水体分布产品,结合验证点对最后分类结果进行精度评价。