中巴经济走廊专题 I 区论文(评审中) 版本 ZH2
下载
中巴经济走廊2000–2017年逐月温度植被干旱指数数据集
A dataset of monthly temperature vegetation dryness index along the China–Pakistan Economic Corridor from 2000 – 2017
 >>
: 2018 - 08 - 01
: 2018 - 09 - 25
: 2018 - 09 - 25
442 4 0
摘要&关键词
摘要:中巴经济走廊沿线干旱灾害发生频繁,制约了沿线国家的安全和社会发展,需要开展干旱监测研究。土壤含水量是干旱监测的重要指标,通过温度植被干旱指数能够反演表层土壤水分,进而监测旱情。本数据集基于MODIS植被指数和地表温度产品,结合SRTM DEM数据,利用NDVI-LST特征空间特性,提取特征空间干湿边,获得2000–2017年中巴经济走廊逐月温度植被干旱指数数据集。本数据集空间范围为北纬41°25′24.49″–23°45′24.49″,东经60°53′57.97″–79°52′27.97″,数据格式为GeoTiff,空间分辨率为1 km。与气象站观测降水和土壤湿度数据对比分析表明,本产品与SPI和土壤湿度呈负相关关系,相关性较好。本数据集可以为中巴经济走廊干旱灾害监测提供基础数据和科技支撑。
关键词:中巴经济走廊;温度植被干旱指数;地表温度;归一化植被指数
Abstract & Keywords
Abstract: Drought disasters happen frequently along the China–Pakistan Economic Corridor (CPEC), which harm the development and safety of the countries along it. It is therefore important to conduct drought monitoring along CPEC. While soil water content (SWC) is a fundamental indicator of drought prediction, temperature vegetation dryness index (TVDI) can predict drought by inverting surface soil water content. Based on a combination of MODIS normalized differential vegetation index (NDVI) and land surface temperature (LST) products and SRTM DEM data, the study used NDVI-LST spatial characteristics to extract the spatial edge of dryness and wetness along CPEC from 2000 – 2017, through which to obtain the monthly TVDI. The study area is from 41°25'24.49"N to 23°45'24.49"N and from 60°53'57.97"E to 79°52'27.97"E. The data are in GeoTiff format, with a spatial resolution of 1 km. We then compared the data with the precipitation and soil water content observed by meteorological stations. Results showed that TVDI had a significantly negative correlation with SPI and SWC (p<0.001). The dataset can be used to support drought monitoring and prediction along CPEC.
Keywords: China–Pakistan Economic Corridor; temperature vegetation dryness index; land surface temperature; normalized differential vegetation index
数据库(集)基本信息简介
数据集名称中巴经济走廊2000–2017年逐月温度植被干旱指数数据集
数据作者冯克庭、张耀南、田德宇、康建芳
数据通信作者张耀南(yaonan@lzb.ac.cn)
数据时间范围20002017年
地理区域地理范围包括北纬41°25′24.49″–23°45′24.49″,东经60°53′57.97″–79°52′27.97″。地理范围涉及中国喀什地区及周边和巴基斯坦。
空间分辨率1 km
数据量632 MB
数据格式*.tif
数据服务系统网址http://www.sciencedb.cn/dataSet/handle/640
http://www.crensed.ac.cn/portal/metadata/34994230-7c93-4d39-8cc3-950f1db2dd7e
基金项目国家科技基础条件平台“特殊环境特殊功能观测研究台站共享服务平台”(Y719H71006)、中国科学院信息化专项“寒旱区环境演变研究‘科技领域云’的建设与应用”(XXH13506)。
数据集组成数据集由216个数据文件组成,数据文件为月温度植被干旱指数数据,数据格式为tif,文件名为TVDI.AYYYYDDD.1_km_month.tif。
Dataset Profile
TitleA dataset of monthly temperature vegetation dryness index along the China–Pakistan Economic Corridor from 2000 – 2017
Data corresponding authorZhang Yaonan (yaonan@lzb.ac.cn)
Data authorsFeng Keting, Zhang Yaonan, Tian Deyu, Kang Jianfang
Time range2000 – 2017
Geographical scopeThe area is from 41°25′24.49″N to 23°45′24.49″N and from 60°53′57.97″E to 79°52′27.97″E.
Spatial resolution1 km
Data volume632 MB
Data format*.tif
Data service systemhttp://www.sciencedb.cn/dataSet/handle/640
http://www.crensed.ac.cn/portal/metadata/34994230-7c93-4d39-8cc3-950f1db2dd7e
Sources of fundingNational R&D Infrastructure and Facility Development Program of China “National Special Environment and Function of Observation and Research Station Shared Service Platform” (Y719H71006);
Information Program of the Chinese Academy of Sciences “Construction and Application of ‘Technology Cloud’ in Cold and Arid Regions Environment Evolution” (XXH13506).
Dataset compositionThe dataset consists of 216 files of monthly temperature vegetation dryness index data in total. The files are named in the format of TVDI.AYYYYDDD.1_km_month.tif.
引 言
中国–巴基斯坦经济走廊(简称“中巴经济走廊”),范围包括巴基斯坦全国和中国新疆喀什地区及周边(图1),起点在中国新疆喀什,终点在巴基斯坦瓜达尔港,全长3000 km,北接“丝绸之路经济带”、南连“21世纪海上丝绸之路”,是贯通南北丝路关键枢纽,是一条包括公路、铁路、油气和光缆通道在内的贸易走廊,也是“一带一路”倡议的重要组成部分[1-2],将对中巴两国的经济社会发展产生重大的影响,为“一带一路”建设实施发挥示范和推动作用[3]。中巴经济走廊沿线干旱灾害发生频繁,严重影响着沿线国家的安全和社会发展,制约着“一带一路”重大战略的实施[4]。因此,有必要利用各类数据对中巴经济走廊沿途干旱灾害开展监测研究,这将对抗旱减灾及风险评价提供有力的理论依据,为进一步掌握有效的综合干旱指标提供科技支撑,为抗旱生产实践提供决策参考,促进中国与“一带一路”沿线各国的灾害监测、预警、救灾、减灾的科技合作。


图1   研究区示意图
干旱的监测和分析,长期以来都是政府和学术界高度关注的热点问题[5]。传统的干旱监测方法是基于地面台站观测或实验观测,利用气象和水文观测站获得的降水、气温、蒸发、径流等气象和水文数据,以及农业气象观测的墒情等数据,依据各种干旱指标对观测数据进行统计分析来对干旱情况进行量化分析。由于观测站点空间密度有限,仅靠地面观测点的资料很难对干旱进行大范围、快速、连续的监测。随着遥感技术的发展和应用,遥感干旱监测已经成为全球抗旱减灾中不可或缺的手段,它与传统学科相结合,优势互补,可以提供区域、大陆乃至全球的旱情信息[6],是一种宏观、快速、客观、经济的有效手段[7]。本数据集以MODIS植被指数和地表温度数据为基础,结合数字高程模型(Digital Elevation Model,DEM)数据,获取了2000-2017年“中巴经济走廊”区域逐月温度植被干旱指数(Temperature Vegetation Dryness Index,TVDI)数据集,为区域灾害研究与决策提供基础数据。
1   数据采集和处理方法
本数据集采用数据为MODIS植被指数产品MOD13A3、地表温度产品MOD11A2,SRTM DEM产品以及气象站观测降水数据和土壤湿度数据,其中MODIS数据来源于美国航空航天局(National Aeronautics and Space Administration,NASA)陆地产品处理分发数据中心 (Land Processes Distribution Active Archive Center,LPDAAC,https://lpdaac.usgs.gov);DEM数据来源于地理空间数据云(http://www.gscloud.cn)提供的SRTM数据集;降水和土壤湿度数据来源于国家气象数据共享服务平台(https://data.cma.cn)。数据生产流程包括:数据预处理、数据重建、计算与评估,如图2所示。


图2   数据生产流程图
其中数据预处理进行数据拼接、投影转换、波段提取、重采样等,提取的波段包括归一化植被指数(Normalized difference vegetation index,NDVI)、地表温度(Land Surface Temperature, LST)及相应的质量控制文件(Quality Assurance,QA);数据重建包括空间插值、地形校正、时间序列补齐、时间序列重建;计算与评估对TVDI进行计算,并利用标准化降水指数(Standardized Precipitation Index,SPI)和土壤湿度对指数进行评估。
1.1   数据预处理
MODIS植被指数产品MOD13A3时间分辨率为月,空间分辨率为1 km,地表温度产品MOD11A2时间分辨率为8天,空间分辨率为1km,数据格式为hdf,投影方式为正弦曲线地图投影。利用MODIS再投影工具(MODIS Reprojection Tool,MRT)对数据进行拼接、投影转换、波段提取和重采样。MRT参数设置:输出格式为Geotiff,输出投影采用地理投影,水准面选择WGS84,采样方法为最近邻采样,像元大小为0.0083333333度(1km)。获取NDVI、地表温度及相关质量控制数据。
DEM数据格式为Geotiff,分辨率为90 m。利用ArcGIS工具,对DEM数据进行拼接、重采样、裁剪,生成分辨率为1 km的中巴经济走廊DEM数据。
采用Python语言编程,结合研究区矢量边界和MODIS质量控制数据,实现数据批量裁剪和掩膜,剔除质量不可靠像元,生成中巴经济走廊质量可靠的NDVI和地表温度数据集。
1.2   数据重建处理
遥感数据重建旨在利用多种统计和数值分析方法,模拟缺失数据或提高反演模型精度,从而实现插补缺失观测值,优化时间序列数据,为相关研究提供更加完备的基础数据。遥感数据重建方法分为空间重建和时间重建两类,本数据集生产过程中采用空间重建方法。
1.2.1   空间插值处理
数据预处理提取的NDVI和温度数据,其质量不可靠像元缺失,需要进行空间插补,采用反距离加权(IDW)方法实现数据的空间插值。利用Python首先调用ArcGIS arcpy包的RasterToPoint模块将栅格数据转换为矢量数据,其次调用ArcGIS arcpy包的IDW模块实现数据批量空间插值处理,IDW方法参数设置如下:
(1)距离指数:用于控制内插值周围点的显著性,值越高,距离较远的数据点影像越小,通常取值范围在0.5~3之间可以获得最合理结果,本次处理选择值为2;
(2)搜索半径:定义对缺失像元值进行插值的输入点,包括可变搜索半径和固定距离两种方式指定输入采样点,选择可变搜索半径方式,插值的最邻近输入采样点数量为12;
(3)像元尺寸:设置为与输入影像数据相同。
1.2.2   温度数据地形校正处理
研究表明[8],TVDI模型反演的精度受地表温度、植被覆盖状况、地表参数、大气条件及太阳辐射等因子影响,而地理纬度和地面高程是影响大气背景差异和太阳辐射的两个重要因素。研究区内地形起伏、南北纬度跨距的差异对MODIS地表温度数据的影响会带来TVDI的计算误差,因此,利用地理纬度和地面高程对地表温度进行校正,达到对大区域大气背景差异和太阳辐射校正的目的。地表温度校正的公式如式(1)。
\({T}_{c}={T}_{s}+a×H+b×L+c\) (1)
式(1)中\({T}_{c}\)为校正后地表温度,\({T}_{s}\)为校正前MODIS地表温度,H为高程,L为纬度,a为高程校正系数,bc分别为纬度校正系数,其中a常取0.006(0.6℃/100 m)[9-10],也有研究表明新疆地区a的最优取值为0.003~0.005(0.3~0.5℃/100 m),纬度校正系数bc分别取0.3~0.5、−20~−12[10],本数据集生产中a取值为0.003,b取值为0.4,c取值为−16。
1.2.3   数据时间序列处理
由于MODIS数据序列中部分影像期数缺失,需要对缺失期影像进行补全。处理过程中,采取多年同期数据平均值的方法补全缺失期影像。由于计算中需要的NDVI和地表温度数据时间分辨率为月,而MODIS 1 km地表温度无月分辨率数据,因此将MOD11A2数据转换为月尺度,采用方法为月内8天数据取平均。
1.3   温度植被指数计算
在遥感干旱监测中,将植被指数和地表温度相结合进行干旱监测的方法使用广泛[11,12,13,16,17 ]。TVDI[8]是一种基于NDVI-LST特征空间的土壤水分监测方法,具有一定的物理意义,较单独使用NDVI或LST能够提供更加准确、丰富的干旱信息。LST与NDVI的斜率与土壤水分的负相关关系是特征空间中的重要统计特征。随着地表植被覆盖度的增加,地表温度开始下降。当地表干旱缺水时,地表温度会迅速升高;反之,土壤湿度较大,地表温度增加较少。由特征空间原理可知,计算TVDI 的关键是干湿边的拟合。现有的研究结果表明,特征空间中干边上NDVI与LST都呈现显著的负相关关系,这说明当植被受到水分胁迫时,地表温度随着植被覆盖度的增加而降低。大多数研究中湿边上NDVI与LST呈现正相关或者不相关,以两者的正相关关系居多[18]。TVDI的计算公式为:
\(TVDI=\frac{{T}_{c}-{{T}_{c}}_{\mathrm{m}\mathrm{i}\mathrm{n}}}{{{T}_{c}}_{\mathrm{m}\mathrm{a}\mathrm{x}}-{{T}_{c}}_{\mathrm{m}\mathrm{i}\mathrm{n}}}\) (2)
\({{T}_{c}}_{\mathrm{m}\mathrm{a}\mathrm{x}}={a}_{1}+{b}_{1}×NDVI\) (3)
\({{T}_{c}}_{\mathrm{m}\mathrm{i}\mathrm{n}}={a}_{2}+{b}_{2}×NDVI\) (4)
式(2)、(3)、(4)中\({T}_{c}\)为任意像元的地表温度,\({{T}_{c}}_{\mathrm{m}\mathrm{a}\mathrm{x}}\)\({{T}_{c}}_{\mathrm{m}\mathrm{i}\mathrm{n}}\)分别为一定NDVI对应的最低和最高地表温度,a1b1a2b2 分别为待定系数,TVDI取值范围为[0, 1]。对于一组NDVI和LST遥感影像,对NDVI取步长0.01,求取每一NDVI对应的LST最高、最低值,用最小二乘法拟合得到干、湿边方程,拟合效果如图3所示,进而将(3)、(4)式代入(2)式,求得TVDI。

(a)


(b)


(c)


(d)

图3   2009年5-8月NDVI-LST特征空间及干湿边拟合图
(a)2009年5月 (b)2009年6月 (c)2009年7月 (d)2009年8月
2   数据样本描述
2.1   命名规则
中巴经济走廊2000–2017年逐月温度植被干旱指数数据集命名规则如下:TVDI.AYYYYDDD.1_km_month.tif,具体意义为:
(1)TVDI:表示温度植被干旱指数产品;
(2)AYYYYDDD:表示产品时间为YYYY年第DDD天(以每年1月1日为第一天);
(3)1_km:表示产品空间分辨率为1 km;
(4)month:表示产品为月数据。
如TVDI.A2017032.1_km_month.tif,表示2017年2月,空间分辨率为1 km的温度植被干旱指数产品。
2.2   数据描述
中巴经济走廊2000–2017年逐月温度植被干旱指数产品信息如表1。
表1   温度植被干旱指数产品信息
序号内容数值
1波段数1
2像素值1~10000
3数据类型unsigned int 16
4比例因子0.0001
5填充值0
6行数2120
7列数2277
8像元大小0.0083333333, 0.0083333333
9坐标系WGS84
以TVDI作为干旱分级指标,将干旱等级划分为5级:湿润(0<TVDI<=0.2)、正常(0.2<TVDI<=0.4)、轻旱(0.4<TVDI<=0.6)、中旱(0.6<TVDI<=0.8)和重旱(0.8<TVDI<=1)。图4所示,以TVDI分级指标划分的干旱等级图。

(a)


(b)

图4   中巴经济走廊干旱等级图
(a)2017年4月 (b)2017年9月
3   数据质量控制和评估
3.1   数据质量控制
按照植被指数产品数据说明,依据QA值将NDVI像元分为可信和不可信两种,提取质量可信像元。处理流程如图:
(1)像元可靠性波段(1 km monthly pixel reliability)中像元值为0的像元标定为可信像元;
(2)因为研究区内有大量冰川分布,因此,将1 km monthly pixel reliability中像元值为2的像元标定为可信像元;
(3)1 km monthly pixel reliability中像元值为3的像元标定为不可信像元;
(4)1 km monthly pixel reliability中像元值为1的像元标定为待定像元;
(5)对于待定像元,比较相应的1km monthly VI Quality像元值0–5位数值确定该像元的可信度:当0–1位值为0时,确定为可信像元;当0–1位值为1时,依据2–5位值确定可信度;
(6)掩膜处理,剔除不可信像元,提取可信像元,生成新的NDVI数据。
地表温度数据依据质量控制(QC)文件说明,提取质量可信像元,处理流程如下:
(1)质量控制波段QC_Day中0–1位值为0的像元标定为可信像元;
(2)QC_Day中0–1位值为2和3的像元标定为不可信像元;
(3)QC_Day中0–1位值为1的像元标定为待定像元;
(4)对于待定像元,比较QC_Day中相应像元2–7位的值确定该像元的可信度:当2–3位的值为0时,标定为可信像元;当2–3位的值为1时,对应的4–5位值为0,6–7位值为0的像元标定为可信像元;其他像元标定为不可信像元;
(5)掩膜处理,剔除不可信像元,提取可信像元,生成新的地表温度数据。
3.2   TVDI与站点SPI和土壤湿度的相关性分析
SPI已经被证实能够很好地反映气象干旱,TVDI也是一种土壤水分监测方法,因此,用SPI和实测土壤水分对TVDI进行评价。由于未获取到巴基斯坦境内的气象站观测资料,这里仅利用中国境内7个气象站降水数据计算出的月尺度SPI和3个气象站的土壤湿度数据,对TVDI进行有效性验证。计算1960–2016年7个气象站的SPI,提取2000–2016年7个气象站对应像元的TVDI值,并对各气象站TVDI与同期逐月SPI和土壤湿度进行相关性分析。结果表明(图5),TVDI与SPI、土壤湿度呈负相关关系,TVDI与月尺度SPI相关系数最大为−0.393,最小为−0.21,p<0.001, TVDI与SPI的相关性都通过了p<0.01的显著性检验;TVDI与实测土壤湿度相关系数最大为−0.617,最小为−0.258,p<0.001, TVDI与土壤湿度的相关性都通过了p<0.01的显著性检验。

(a)


(b)


(c)


(d)


(e)


(f)


(g)


(h)


(i)


(j)

图5   TVDI与各气象站SPI、土壤湿度相关图
4   数据使用方法和建议
中巴经济走廊2000–2017年逐月温度植被干旱指数数据集在月尺度上反映区域干旱的变化特征,数据按月存储,格式为GeoTiff格式。数据读取和操作可以用ArcGIS、ENVI等常用的GIS与遥感软件。TVDI以影像的像元值表示,在使用过程中,用户可以根据自己的分级标准对数据进行分级,生成干旱等级图。
致 谢
感谢USGS提供MODIS数据,感谢地理空间云提供DEM数据,感谢国家气象数据共享服务平台提供降水和土壤湿度数据支持。
[1]
丁思洋, 朱文泉, 江源, 等. 基于RS与GIS的中巴经济走廊生态现状评价[J]. 北京师范大学学报(自然科学版), 2017, 53(03): 358-365.
[2]
王会芝, 惠之凡, 徐鹤. “中巴经济走廊”建设生态环境风险分析与应对策略[J]. 河海大学学报(哲学社会科学版), 2017, 19(01):6 5-68, 90-91.
[3]
胡鞍钢, 马英钧, 高宇宁. “一带一路”: 打造对外开放升级版, 创造全球性开放红利[J].河海大学学报(哲学社会科学版), 2016, 18(04): 1-5, 89.
[4]
崔鹏, 苏凤环. 国产高分辨率卫星在“一带一路”自然灾害风险管理中的应用[J]. 卫星应用, 2016(10): 8-11.
[5]
郭铌,王小平. 遥感干旱应用技术进展及面临的技术问题与发展机遇[J]. 干旱气象, 2015, 33(01): 1-18.
[6]
柳钦火, 辛景峰, 辛晓洲, 等. 基于地表温度和植被指数的农业干旱遥感监测方法[J]. 科技导报, 2007, (06): 12-18.
[7]
刘欢, 刘荣高, 刘世阳. 干旱遥感监测方法及其应用发展[J]. 地球信息科学学报, 2012, 14(02): 232-239.
[8]
SANDHOLT I, RASMUSSEN K, ANDERSEN J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2): 213-224.
[9]
冉琼, 张增祥, 张国平, 周全斌. 温度植被干旱指数反演全国土壤湿度的DEM订正[J].中国水土保持科学, 2005(02): 32-36, 50.
[10]
赵杰鹏, 张显峰, 廖春华, 包慧漪. 基于TVDI的大范围干旱区土壤水分遥感反演模型研究[J]. 遥感技术与应用, 2011, 26(06): 742-750.
[11]
KARNIELI A, AGAM N, PINKER R T, et al. Use of NDVI and land surface temperature for drought assessment: Merits and limitations[J]. Journal of Climate, 2010, 23, 618–633.
[12]
KOGAN F. Application of vegetation index and brightness temperature for drought detection[J]. Advanced in Space Research, 1995, 15(11): 91-100.
[13]
KOGAN F. World droughts in the new millennium from AVHRR-based vegetation health indices[J]. Eos, Transactions American Geophysical Union, 2002, 83(48): 557.
[14]
KOGAN F, STARK R, GITELSON A, et al. Derivation of pasture biomass in Mongolia from AVHRR-based vegetation health indices[J]. International Journal of Remote Sensing, 2004, 25: 2889-2896.
[15]
LAMBIN E F, EHRLICH D. The surface temperature-vegetation index space for land cover and land-cover change analysis[J]. International Journal of Remote Sensing, 1996, 17(3): 463-487.
[16]
王鹏新, WAN Z M, 龚健雅. 基于植被指数和土地表面温度的干旱监测模型[J]. 地球科学进展, 2003, 18(4): 527-533.
[17]
齐述华, 王长耀, 牛铮. 利用温度植被旱情指数(TVDI)进行全国旱情监测研究[J]. 遥感学报, 2003 (05): 420-427, 436.
[18]
沙莎, 郭铌, 李耀辉, 等. 我国温度植被旱情指数TVDI的应用现状及问题简述[J]. 干旱气象, 2014, 32(01): 128-134.
数据引用格式
冯克庭, 张耀南, 田德宇,康建芳. 中巴经济走廊2000–2017年逐月温度植被干旱指数数据集[DB/OL]. Science Data Bank, 2018. (2018-08-01). DOI: 10.11922/sciencedb.640.
稿件与作者信息
论文引用格式
冯克庭, 张耀南, 田德宇,康建芳. 中巴经济走廊2000–2017年逐月温度植被干旱指数数据集[J/OL]. 中国科学数据, 2018. (2018-09-21). DOI: 10.11922/csdata.2018.0051.zh.
冯克庭
Feng Keting
主要承担工作:方案设计、数据处理与分析。
fengkt@lzb.ac.cn
(1980—),男,宁夏回族自治区海原县人,博士研究生,工程师,研究方向为地学大数据应用。
张耀南
Zhang Yaonan
主要承担工作:整体方案指导。
(1966—),男,甘肃省天水市人,博士,研究员,研究方向为地学大数据。
田德宇
Tian Deyu
主要承担工作:数据预处理。
(1993—),男,内蒙古自治区四子王旗人,硕士研究生,研究方向为寒旱区遥感。
康建芳
Kang Jianfang
主要承担工作:MODIS数据收集。
(1981—),女,甘肃秦安人,硕士,工程师,研究方向为寒旱区大数据应用。
出版历史
I区发布时间:2018年9月25日 ( 版本ZH2
参考文献列表中查看
中国科学数据
csdata